algebra-simple-0.1: An alternative mathematical interface to Num.
Safe HaskellNone
LanguageHaskell2010

Numeric.Algebra.Ring

Description

Provides the Ring typeclass.

Since: 0.1

Synopsis

Documentation

class (AGroup r, MMonoid r, Semiring r) => Ring r Source #

Defines a ring i.e. a structure that is an AGroup and MMonoid.

Since: 0.1

Instances

Instances details
Ring Int16 Source #

Since: 0.1

Instance details

Defined in Numeric.Algebra.Ring

Ring Int32 Source #

Since: 0.1

Instance details

Defined in Numeric.Algebra.Ring

Ring Int64 Source #

Since: 0.1

Instance details

Defined in Numeric.Algebra.Ring

Ring Int8 Source #

Since: 0.1

Instance details

Defined in Numeric.Algebra.Ring

Ring Word16 Source #

Since: 0.1

Instance details

Defined in Numeric.Algebra.Ring

Ring Word32 Source #

Since: 0.1

Instance details

Defined in Numeric.Algebra.Ring

Ring Word64 Source #

Since: 0.1

Instance details

Defined in Numeric.Algebra.Ring

Ring Word8 Source #

Since: 0.1

Instance details

Defined in Numeric.Algebra.Ring

Ring Integer Source #

Since: 0.1

Instance details

Defined in Numeric.Algebra.Ring

Ring Double Source #

Since: 0.1

Instance details

Defined in Numeric.Algebra.Ring

Ring Float Source #

Since: 0.1

Instance details

Defined in Numeric.Algebra.Ring

Ring Int Source #

Since: 0.1

Instance details

Defined in Numeric.Algebra.Ring

Ring Word Source #

Since: 0.1

Instance details

Defined in Numeric.Algebra.Ring

RealFloat a => Ring (Complex a) Source #

Since: 0.1

Instance details

Defined in Numeric.Algebra.Ring

Ring (Ratio Integer) Source #

Since: 0.1

Instance details

Defined in Numeric.Algebra.Ring